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The conjectures that the 4-dimensional surgery theorem and 5-dimensional 
s-cobordism theorem hold without fundamental group restriction in the to- 
pological category are equivalent to assertions that certain "atomic" links are 
slice. This has been reported in [CF, F2, F4 and FQ]. The slices must be 
topologically flat and obey some side conditions. For surgery the condition is: 
~a(S 3 -  ~ slice)--, rq (B 4 -  slice) must be an epimorphism, i.e., the slice should be 
"homotopically ribbon"; for the s-cobordism theorem the slice restricted to a 
certain trivial sublink must be standard. There is some choice about what the 
atomic links are; the current favorites are built from the simple "Hopf  link" by 
a great deal of Bing doubling and just a little Whitehead doubling. A link 
typical of those atomic for surgery is illustrated in Fig. 1. (Links atomic for 
both s-cobordism and surgery are slightly less symmetrical.) 

There has been considerable interplay between the link theory and the 
equivalent abstract questions. The link theory has been of two sorts: algebraic 
invariants of finite links and the limiting geometry of infinitely iterated links. 
Our object here is to solve a class of free-group surgery problems, specifically, 
to construct certain slices for the class of links ~ where D(L)eCg if and only if 
D(L) is an untwisted Whitehead double of a boundary link L. Unfortunately, (~ 
appears not to be atomic for surgery or s-cobordism. However our technique is 
quite different from the earlier extension [F4] of simply-connected methods 
and may prove helpful in establishing the limits of the nonsimply-connected 
theory. 

An n-component link is a topological imbedding I )  Si c L , $3 of n circles 
i = 1  

in the 3-sphere. It is slice if and only if there is a topological imbedding L 
(dotted arrow) making the diagram: 

* The author has been supported in this work by: the University of California, San Diego; NSF 
Grant MCS82-03126; A.P. Sloan Fellowship BR2065; and the University of Texas at Austin where 
this approach had its first glimmer of success; the untwisted double of the trefoil knot being sliced 
there in November 1982. This preceded (but only by two weeks) the slicing of the general 
Alexander polynomial= 1-knot using different methods IF4] 
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in I S/1 r L , S3 
i= l  

i = i  

commute. Furthermore, we always assume that L is flat (i.e., extends to an 

imbedding of f l  S~ • B 2 into S 3) and will require that L is also flat (i.e., L 
i=1 I~I 

extends to an imbedding of Big x B 2 which restricts to the extension of L). 
i=1 

An arbitrary 4-dimensional surgery problem can be made an isomorphism 
over rq. This done, any standard plane may be represented by an imbedded 2- 
complex K which is the "capped grope" version (see IF4 and FQ]) of S 2 v S 2. 
To remove the homology of the standard plane one should look for a 4- 
manifold N with 0N=• (reg. neib. K ) = 0 Y  and H,(N;Z)~-H,(K;Z) for ,~0 ,1  
and I-I,(N;Z)~O for ,~2 ,3 .  This is equivalent to looking for a slice (in a 
homology 4-ball) for a link L whose 0-framed surgery is (?N. Adding the 
condition "homotopically ribbon" to N (i.e., rq(0N)-+ rq(N) is onto) translates 
into seeking a homotopically ribbon slice in a homotopy (hence standard) 4- 
ball. 

Here is an L which occurs for K, a 2-stage capped groped (S 2 v S 2) 

I 

Fig. 1. L = Wh (Bing (Hopf link)), the (untwisted) 
Whitehead double of the Bing double of the Hopf link 

A boundary link is defined as the boundary of an oriented surface S c S 3 
which satisfies rr0(c~S). ~ 7r0(S ). It is easily computed [M] that Bing (Hopf link) 

mc # 
is not a boundary link so it does not appear that L belongs to our class and 
this can actually be proven using the uniqueness of the toroidal decom- 
positions of Haken manifolds r J]. (For fun, find the five characteristic tori in 
S3--L, observe that they decompose the link complement into six hyperbolic 
pieces, two Borromean rings complements and four Whitehead link comple- 
ments.) 

Related examples of links E 6 ~  can be made, for example, by replacing any 
two components of Bing (Hopf) by their (possibly twisted) Whitehead doubles 
and then forming the (untwisted) Whitehead double of the entire resulting link. 
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A " W h i t e h e a d  curve"  in a f ramed or iented  solid torus is, by definition, 
i so topic  to one of two curves be low:  

Fig. 2 

A n  (untwisted) Whi tehead  doub le  of a (tame) s imple closed curve in S 3 is 
formed as follows. First ,  identify e i ther  of the above  solid tori  with ,# '( l)  so that  
the f raming in the solid torus induces  the untwis ted no rma l  f raming along l 
and then replace l with the image  under  the ident i f icat ion of the Whi t ehead  
curve. A Whi t ehead  double  of a l ink means a Whi t ehead  double  of each of its 
components .  Wi th  these defini t ions we may state our  result. 

T h e o r e m .  Any link D(L) which is an (untwisted) Whitehead double 1 of a tame 
boundary link L is slice in the sense of bounding a disjoint union of topologically 
flat disks in B 4. Furthermore, the complement (B4-disks) is homotopy equivalent 
to a wedge of circles, with =l(B%disks) freely generated by Meridinal loops. 

Proof. The plan is to const ruct  the closed slice complement  abs t rac t ly  as a 4- 
mani fo ld  M 4 satisfying: (1) M 4 ~ v S l ' s  (2) ~Mr and (3) 
n~(OM4)~=I(M 4) is onto,  where 5 P assigns to a l ink the 3-manifold  which is 
the result  of 0-f ramed surgery on the link (i.e., cut out  a tubula r  ne ighbo rhood  
of each componen t  and  glue it back  exchanging mer id ian  and longitude.)  Next,  
2-handles  may be a t t ached  to M 4 to " reverse"  the ear l ier  surgeries. The  result  
will be a h o m o t o p y  4-ball  with b o u n d a r y = S  3. By the Poincar6  conjecture  
( theorem) this is B4; the co-cores  of the handles  jus t  a t t ached  are the (flat) 
slices in the conclus ion of the theorem.  

(S 3 [,nk) S (hnk) M 4 B4= M4U 
2- handles 

Fig. 3 

1 The statement readily implies the same result for "ramified" (untwisted) Whitehead doubling 
since a ramified doubling agrees with the unramified doubling of the "ramified" link which will 
still be a boundary link 
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Recall the notion of a kinky handle [F1]. For simplicity (and without loss 
of generality), we consider kinky handles k formed from the 2-handle (O 2 • D 2, 
?D z x D z) by introducing a single (+  or - )  self plumbing. When discussing the 
attaching map of a kinky handle there are two possible conventions for 
measuring framings; we regard the untwisted parallel of 0 0 2 •  0c6~D2 • D e c  
kinky handle to be the one with linking number to 0D 2 x 0 equal zero (linking 
as computed by intersection number of spanning disks). This differs from the 
curve OD z x 0 by -T- 2 full twists. 

Lemma 1. Let L be any f la t  n-component link in S 3. Let  L • be the n-component 
link in 5P(L) consisting o f  the small meridinal linking circles to L. Form W =  
5r(L) x [0, 1]W(klU ... wk , )  by attaching kinky handles to L • x 1 using the zero 
framing (coming from the inclusion in $3.) Note  that OW is in two components 
O W = 01 W ]_I ~o W where 0 o W =  5f(L) x O. We claim that a ~ W_~ 5P(D(L)). 

Proof. We use the handle claculus notation [K]. The unknown link is drawn: 

0 _ _ 0  

on the level of 3-manifolds attaching a kinky handle (see [F3]) yields ~1 W: 

0 0 

(The dots denote 1-handle, but since we are only looking at the 3-manifold 
these should not be taken too seriously.) Exchange O's and dots (see arrows) 
then Morse cancel to get: 

~ i  W - ~ ( D ( L ) )  : 

0 0 

1,4,' 
The orientation of the clasps, [~i' or y l , l s  governed by the sign of the 

selfplumbing. This ambiguity is reflected in the fact that L actually has 2" 
(usually!) distinct untwisted Whitehead doubles. We will not take the trouble 
to distinguish them in our notation. []  

The next lemma goes back to observations of Milnor [M] and Chen [Ch] 
in the early 1950's. 
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Lemma 2. Let S cT-S 3 be a surface which exhibits L=~S as a boundary link. 
Suppose ? is a loop in S 3 -S ,  then (any element in the conjugacy class of) 7 is a 
consequence of a finite number of relations {Imi, m~l} each saying that some 
meridial circle to a component of L commutes with a conjugate of itself. 

n 

Proof. There is a map f :  $3-*S 3 which is transverse to a collection LI D~ ~$3 

of disks contained in the target and so that f - 1  D~ = S. The loop f(7) is 
i 

n 2 
null homotopic in S 3 -  L[ ODi and is therefore in ker ( f , ) c rc=~l (Sa-L) .  

i = 1  

Stallings theorem relating the lower central series to group homology IS] 
tells us that 7eeoc, the intersection of the finite portion of the power central 
series of re. 

For any n-component link Q Milnor defines the nilpotent "link group" 
G(Q)=gl(S3-Q)/{[mj, m~.]} where the mj are small meridial loops to com- 
ponents and the m~. arbitrary conjugates of mj. Let Q~, i=  1 . . . . .  n, be the link Q 
with the i th component  I i omitted. It can be checked that the kernel K i of 

i n c .  
G(Q) ,G(Qi)~O is generated by conjugates of m i and hence is abelian. 

Furthermore, K 1 . . . . .  K n generate G(Q) so the intersection (~K~ is central. 
i = 1  

Inductively, we now can see that the n th term of the lower central series for the 
link group G(Q) is trivial. To start the induction, notice that for 1-component 

links G ~ Z .  If co,_ 1G(Q i) is trivial then co,_ 1G(Q)~ ~ Ki~ center G(Q). Con- 
sequently, co. G(Q) is trivial, i= 1 

Combining the last two paragraphs we have y eco~ ~ co, ~ ker(~-~ G(Tr)). The 
lemma follows. [] 

Relations of the form r = [ml, m~] have played a major role in 4-dimension- 
al topology. The finger move (see [C] and [F1]) in which a little patch on a 
surface is pulled out around a loop "x"  and brought back through the surface 
effectively adds such a relation to the fundamental group of the complement. 
Although discovered independently by A. Casson and K. Kobayashi  ([C and 
K1] in the early 1970's, the finger move is simply the motion picture of 
Milnor's fundamental operation in the paper referenced above. In this paper 
we follow the simple expedient of attatching a (zero-framed) 2-handle, hi, to a 
(carefully chosen) loop in (S 3 -  L) x 0 which represents the homotopy class of r. 

An important notion to our proof is that of "good boundary link". As we 
have seen any (n-component) boundary link L is inverse to the (n-component) 
unlink, i.e., there is a degree one map f :  $ 3 - - ~ S  3 with f - ~  (unlink)=L. The 
homotopy class of f l :  ( S3 -L) - -* (S3-un l ink )  is sufficiently well defined that L 
can be called a good boundary 2 link if f [  induces an isomorphism on ho- 
mology with coefficients in Z[~r~(S3-unlink)]. On the fundamental group level, 
f l  is giving an epimorphism 0 to a free group (which takes a meridian of each 
component  to a distinct generator). The epimorphism counts intersection with 
an exhibiting Siefert surface S for L. 

The homology of the 0-cover Y= (S 3 - L )  ~ can be computed from the Siefert 
linking matrix of S and in fact formulae for this are given in [F2]. L is a good 

2 This slightly generalizes the definition given in [F2] but does not affect the arguments there 
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boundary link if and only if HI(Y;Z)~O. A simple (and a-calculational) 
method for showing HI(Y;Z)~-O is to exhibit some Siefert surface S' for the n- 
component unlink and an isomorphism of the Siefert forms of S' and S. The 

computation for Ha(S3-unlink""iv';z) must come out the same (i.e., trivial) 
regardless of how S' is chosen and since the answer depends only on the Siefert 

form, HI(S3-I2;Z)  will also be trivial. 
If L is a good boundary link, the natural map h: 5~(L)--~ ~ S ~ x S 2 

n-copies 

extends to a degree one map on a spin manifold p4./~: p4_~ ~ S ~ xD 3 with 
n-copies 

~?h=h. (Proof: A calculation that the Arf invariants of S vanish implies that 
[hi =0E~Pi"(  k/ $1).) Since h is a Z[Trl]-homology equivalence, h is a Wall- 

n-copies 
surgery problem and (/~)~E4(Free)~/P4{e } ~ Z  is well defined. 

The surgery obstruction ( h ) ~  (signature P4)/8. We have observed earlier 
that 8(P4wn(2-handles))=S3, the 2-handles being attached along generators 
of HI(P4;Z). The 3-sphere has Rochlin invariant=0. So 16 divides sig 
(p4~n(2-handles))=sigP4. Connected sum with the Kummer surface shows 
that ( h )  is only defined mod 16 and we may therefore assume that (/~)=0. 
(Compare this with the explicit construction in [F2]). 

It is possible to do 1-surgeries (see [F4 and FQ]) on p4 so that the map is 
an isomorphism on fundamental groups and the surgery kernel is freely gener- 
ated, as a Z[~t~ target]-module by a disjoint collection of complexes X~ each 
one a capped groped-S 2 v S 2, An example of such a thing is drawn below. 

Fig. 4 

It is further known (IF3 and F4]) that if a surgery problem's kernel is 
represented by Xi's as above with the further condition that their inclusions 
are trivial on rc 1 then the surgery problem admits a topological solution, i.e., is 
topologically normally cobordant to a (topological) homotopy equivalence. 
Roughly one uses the ~ information to create a second layer of caps, then a 
"big embedding theorem" ([F1, F4 or FQ2]) exists to serve as a starting point 
for infinite constructions. While it is not presently known if all good boundary 
links are topologically slice, we have: 

Lemma 3. Let E and E' be links in S 3. Let E' be a good boundary link. Suppose 
there is a 4-manifold Q with t ? Q = ? + Q ~ - Q ,  ~+Q~-Se(E), ~I(6+Q)--*zcl(Q) 
onto, a-Q--Sg(E') ,  and Q admitting a Z[n~C] homology equivalence, h: (Q; 
~+Q, O-Q)-*(C;  (3+ C, c~- C). The model space is C= ~ S 1 • i 

n-copies 
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( ~ S 1 x D3), where i is an imbedding inducing the trivial map on ~1, ?J+ C 
k-copies 
=c~( ~ S 1 x D  3) and ~ C=i(c~( ~ SlxO3)).  Further suppose that h , :  

n-copies k-copies 
~I(Q)--,~zl(C) is an isomorphism and that h[?~ Q is the natural map. Then E is 
slice in the sense of bounding disjoint f lat imbeddings of disks in B 4. Furthermore, 
our construction results in a slice complement (B4-disks) which is homotopy 
equivalent to a wedge of circles as in the conclusion of theorem 1. 

Proof. Let P with ~P=6(/2') be the domain of the surgery problem (with the 
appropriate 1-surgeries completed) constructed above. It is now possible to 
glue Q and P together along (? Q~-~P to form the domain V of a surgery 
problem f with target ~ S 1 x D 3. It is easy to check that f induces an 

n-copies 
isomorphism on ~1 and that the two-dimensional kernel (with Zl~l  target]- 
coefficients) is freely generated by the 2-complexes X ~ c P  which maps zero on 
fundamental group. As remarked above, f may be solved to produce a to- 
pological manifold V' with ~V'=(?+Q= cJ(/2) and V'~ ~/ S 1. As described 

n-copies 
earlier, the 4-ball together with the desired slices is now obtained by attaching 
n 2-handles to V'. [] 

Fig. 5 

Let us now return to the manifold W described in Lemma 1. We will form 
from W a manifold Q satisfying the hypothesis of Lemma 3, with ? + Q ~  
5~(D(L)) and ~ -Q  ~ 5P(/2'), where/2'  is some good boundary link which we will 
describe. This will complete the proof of the theorem. Formation of Q from W 
occurs in two steps: First, certain 2-handles {ht}'s are attached to 0 W (with 
zero framing as measured in S 3 x0) and second certain (multiply) kinky 
handles {k~}, i<i<=n, (again with framing zero as measured in S 3 x0) lying in 
Ww2-handles with attaching region in (? W are deleted. 

The picture, which we now describe in detail, is represented schematically 
in Fig. 6. 

k o  _ _ k 2  There are precursers { i}, l < i N n ,  to the { ~}, built from the cores /<~, 
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1 < i N n ,  of the kinky handles k l c  W, /~o =/~i w (?/ci x [0, 1]. Do t  denotes "core  of 
kinky handle." We have some improvements  planned for {/~0} and to effect 
these we will need three disjoint collections of disjoint- transverse-(immersed)-  
spheres to {/~o}. These are unavai lable  in W but  can be found after the 2- 
handles h t are attached. 

For  each componen t  l 1 . . . . .  l, of L construct  three untwisted (linking num- 
b e r = 0 )  parallels 11i, 12i, 1/3 in J~(L).  For  convenience, order  these parallels by a 
single index. We denote them by I j, l < j < 3 n ,  so la(i 1)+,,=/~,, l < i < n  and 
l_<m_<3. 

The collection of simple closed curves {1 j} bound 3n disjointly imbedded 
surfaces in (S 3 - L )  x 1/2 formed from three copies of S. Let  {ek} be imbedded 

simple closed curves representing a simplectic basis for H 1 S~;Z . Further,  
J 

assume {ek} is geometric,  i.e., its intersections are as few as possible for a 
simplectic basis. Each e k satisfies the hypothesis  of L e m m a  2 (since each e k is 
complemen ta ry  to a fourth copy of S) so there are a finite number  of words, r t 
= [mi(t), rn~(t)] c ~ 1 (($3 _ L) x [0, 1 ]), whose normal  closure contains all [ek]. For  
each word  r t we describe a simple closed curve ~ c ( S 3 - L ) x  0 to which the 2- 
handle h, is at tached.  

Find a collection of disjointly imbedded genus-two handle bodies in (S 3 
- L ) x 0  indexed by t, {B~}. Abstract ly,  Bt=SI•215 1 •  2. Require 
that  the two circles ( S i x 0 )  be small meridial  circles, both  to the same com- 
ponent  of L and that  I x 0 be the conjugat ing arc corresponding (after a choice 
of  base point) to x,. Inside B t are m a n y  curves representing r~; below we have 
made a part icular  choice for ~ which will make  E', when defined, a good 
boundary  link. 

~,(t) = component of 
LxO. 

~t Bt 
Fig. 7 

Notice  that  because of the small full twist on the left, the obvious  genus 
one Siefert surface for ~ visible in Fig. 7, has an "untwis ted"  simplectic basis 
(at, bt) satisfying link (li(t),at)=O, link (li(t),bt)=l and linking numbers  with 
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other lj, j+i(t), all zero. Untwisted means that the normal into the Siefert 
surface determines a push-off with linking number=0. Attach {he} to 5P(L)x 0 
along {4} using the zero-framing (induced from $3). 

Now the {ek} bound immersed (and intersecting) disks {dk} in (S 3-neib.  
(L)) x [0, 1/2] ~ (U ht)" Gluing dk'S to SSs creates capped surfaces {Sj} (see IF4 

t 

and FQ]) which are disjoint from k ~ and intersect each other only in the caps. 
Hook up these surfaces with copies of the /i-longitude-spanning disks (arising 
from the surgeries sa-* 5P(L)) to obtain {S j}, three collections of closed capped 
surfaces geometrically dual to {/~0} with all intersection within and between 
collections occurring in the caps. 

J<l 

~T ~ ^ J 
k, ~ 

S~ 

spann,ng d~sk 

Fig. 8 

"hook up" 

A process called symmetric surgery in IF4] and contraction in [FQ] exists 
whereby a closed capped surface S is cut and glued into an immersed sphere S. 
(Also see [El for an exposition of this process.) At the cost of introducing new 
intersections between everything (i.e., other caps, dk) which cross the " +  caps" 
and everything which cross the " -  caps", disjointness of one S and the other 
S's is obtained. Contracting one capped surface at a time we finally have three 
completely disjoint collections of immersed spheres geometrically dual to {k~ 

Figure 9 should remind the reader of how contraction works. 

Other 
cops 

. •  C(:]p 

Before contrachon 

Fig. 9 

y t- 
Other caps 

After controctlon 
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The double point of each /~0 is removed by piping it into a dual from the 
first collection (recall Fig. 6). Call the result /~]. Now k ~ and k] each has a 
framing of its attaching regions in 5P(L)x 0, coming from S3x 0; intersection 
theory in k ~ and k~ allows these framings to be identified with an integer. By 
construction this integer is 0 for k ~ and, it is easily computed, will be _+2 for 
kr That is, piping into a framed dual sphere changes the framing by 4-2. An 
appropriate ( -  or +)  connected sum of the cores with a dual from the 
second collection results in {k 2} with the framings returned to zero. The kZ's 
have the important new feature that ~1 (image k2)~rcl(Wu(Uht)) is the zero 

t 
map. The third collection of duals is used only to control the fundamental 
group of the complement. 

We now define 147= W~ (U h,) and Q = W - i n t e r i o r  ~)k  2) with (?+Q 
t i=1 

=c ~+ W and ~ Q=OQ-?~+Q. We will show that Q satisfies the hypotheses of 
Lemma 3 with/2 = D(L). 

Let us begin by identifying the link /2' with 5~(/2')=(?-Q. Abstractly, (?-Q 
arises from S 3 x 0 in three steps. First, do 0-framed surgery on L; second, do 0- 
framed surgery on {rt}; third, delete the solid tori a~ 0 k i and glue in ~ ?~+(ki) 
with zero framing. From the point of view of link calculus (see [K]) only the 
last step is at all unusual. The prescription for drawing the diagram for this 
modification is derived in [-F1]. 

Below, L is drawn schematically as two squares. The link diagrams corre- 
sponding to our 3-step prescription are also given schematically. (Zero is 
understood to label any curve representing the attaching region of a 2-handle.) 

a(ht)='~ t 

I 

1-handtes  rn kinky handte,  k i 
( may be ramif ied ) 

Fig. lO 

Trading one and two-handles followed by Morse cancellation leads to a 
(ramified, untwisted) Whitehead doubling D(L) of L with the ~-components 
unchanged. This is the l ink/2" 
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L~= 

~(L) ~ - -  

-I 
Fig. 11 

The point of drawing this schematic is that it makes it easy to verify that 
all links in the above form are good boundary links. First, pick out the natural 
bounding surface S" for/2'. The method, as explained earlier, is to find a Siefert 
surface U for the unlink with the same Siefert matrix as exhibited by S". This 
is easily done since very little of the detail of/2'  is relevant to the Siefert form. 
Chiefly, one notes that any two components of the original link L have linking 
number=0.  For the above example (and only its multiplicities are relevant), 
the corresponding U is drawn below. 

Fig. 12 

The proof will be completed by showing that Q has the required homology 
and fundamental group. To construct the map h: Q-* C notice that C contains 
as proper submanifolds n 3-balls and m 2-balls (m--order /2') so that cutting 
along these changes C to S3x I. The existence of h (merely) as a degree= 1 
(and normal) map is equivalent to finding a disjoint collection of n 3-manifolds 
and m surfaces in Q to serve as condidates for f - 1  (3-balls) and f - 1  (2-balls). 
Finding these submanifolds is simply a matter of looking for them; brief 
directions to aid in their location are given in the two paragraphs which 
follow. 

Consider null homotopies A S in 1~ for the natural generating set f i  ~zl(k~2). 
i=1  

These exist since 7~ 1 [(~(L) x [0, l ] ) w ( U  ht)]-----~l(W ) is the zero map. Let {6t} 
t 

be the co-core disks in the 2-handles {ht}. If the A]s and the 6t's are permitted 

to cross through ~J kl z then the A s's and 6t's may be taken to be a family of 
i - 1  
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disjoint embeddings. Remove intersections of these null homotopies with 0 k~ 
i - 1  

by piping into copies of the sufaces Sj, 2 n + l < j < 3 n ,  underlying the third 
collection of duals to {k~ Until now, these have been held in reserve. Trimm- 
ing away collars on the boundary results in a collection of surfaces, {Zls} u {6t}. 
These are relatively imbedded surfaces in (Q, 0-Q)  dual to a generating set for 
HI(3-Q;Z)  and are the surfaces we seek. 

Within each kinky handle of W are two "distinguished solid tori" (see 
[F1]), let T~ be the one whose core is parallel to the tube h which joined the 
"first collection" to /~o (in forming k/1.) The T/ are dual to a generating set for 
HI(Q;Z ) and are a first approximation to the 3-submanifolds we seek. The 

intersection Tic~ Uk~ z ~ (  z l U 6  ) consists of the core circle of T~, where 
i t 

the tube r i passes through, parallel copies of the core where the As's passed 
through, and small meridial circles linking the original copy of the core where 
tubes {z'}, arising from the piping to {S j, 2n+  1 _-<j-<_ 3n}, pass through. These 
may be eliminated in three steps by bording 7"{". The core circle intersection is 
removed, replacing T i with Ti'=0+(Ti x IuY(k'~)) a boundary component of a 
product neighborhood of T~ union a regular neighborhood of the interior 
component of k { -T~. The meridial circles are removed by replacing T{ with 
T{'=0 ( T { x l u Y ( s u r f a c e ) )  where these surfaces are those subsurfaces of 
(LIAs)zz(LI6t) with connected boundary separated by the tubes {z'}. A final 

S t 

bordism based on thickenings of subsurfaces of (LI J s ) - ~  Ti" with connected 
s 

boundary removes the remaining parallel copies of the core circle. Using 
{7"{", .... T/,"} as our collection of 3-submanifolds and the surfaces {Js}u{6~} 
we construct the map h. 

T I 
k, = k~nky 

F i g .  13 

Since the kinky handles {__k 1 . . . . .  k,} kill nl(SC(L)), it follows from 
VanKampen's theorem that nl(W) is a free group with {T/}, or for that matter 
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{Ti"' }, geometrically dual to a set of generators. Since {k 2} has a collection of 
dual  spheres (the " third collection"), the inclusion Q ~ W is an isomorphism on 
n 1. But {h(T["} = {B~} c C is geometrically dual  to a set of free generators for 
rq(C), thus h induces an i somorphism h#:  n l ( Q ) - + n l ( C  ). 

The (untwisted) Whitehead double of a link is a good boundary  link if and 
only if the l inking number  between any two components  is zero. Thus, D(L) is 
a good boundary  l ink and h restricted to c~+ Q is a Z [ n l ( C ) ] - h o m o l o g y  equiva- 
lence. Since the fundamenta l  group of C acts simply by permut ing lifts, h 
restricted to ~ Q is a Z [ n , ( C ) ] - h o m o l o g y  equivalence. It follows that the 
intersection pair ing on the kernel K, 

0 ~ K ~ H2(Q;Z[n  , ( C ) ] ) ~  H2(C; Z [hi  (C)]) ~ 0 

is nonsingular ,  i.e., )~: K - - ~ H o m ( K ,  Z[n~(C)]  is an isomorphism. 
It is quite easy to describe the universal cover W""iv'--~ l~ ;  it is built  by 

p lumbing  together countably  many  copies of W' where W' is W after the 
p lumbings  in the kinky handles are unidentified. The intersection pair ing on 
H 2 ( W ; Z  ) is identically zero (for this note that link (~ ,~ )=0 ,  V i,j). The 
p lumbings  do not  i n t r o d u c e  any nonzero intersections among cycles so the 

H ( W  univ'" Z ] is also trivial. Since there is an inclusion intersection pair ing on 2 ' , ~  , ! 
of universal covers (~,niv. c WU,iV.. The intersection pairing must  also be identi- 
cally zero on H2(Q;Z[nl(C)]  ) so 2 is the zero map. Combined  with the 
preceding paragraph,  we have K ~ 0 .  Duali ty for kernel groups (see [W]  ch. 2) 
now implies that  h is an equivalence on homology with Zn,-coefficients ,  
complet ing the proof of the theorem. []  
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